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ABSTRACT

This report presents the results of theoretical and experimental investigations
of the flow in the wake of hypersonic vehicles, Nonsimilar solutions of the
equations governing the 'far wake'' are obtained -and contrasted with similar
solutions and with solutions involving the Karman-Pohlhausen approach, Nu-
merical examples of the flow field in the wake of ballistic-range and wind-
tunnel models and of a flight-size vehicle are presented.

A series of ballistic-range experiments with conical models of 10, 15, and
27-1/2-degree half-angles are described. The model velocity ranges bctween
4,000 and 17, 000 ft/sec with range pressures varying from 15 to 380 mmHg
in air. The experimental data is discussed in detail, and the analysis is used
to compute and correlate appropriate transition parameters.

Based on the correlation, predictions of the location of transition in the wake

of a 12-degree half-angle cone at 22, 000 ft/sec are made for the altitude range
from 200, 000 to 100, 000 feet. For example, transition is placed at approximate-
ly 250, 100, and 20 feet from the apex of a 5-foot cone at altitudes of 200, 000,
150, 000 and 100, 000 feet, respectively, assuming the boundary layer on the

cone surface remains laminar,

-ii-
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NOMENCLATURE

integrals defined by equations (6) and (7)
static enthalpy

stagnation entbalpy

an index, either O or 1

pr/py i

Mach number

number of strips

pressure

Prandtl number

normal coordinate, measured from axis or plane of symmetry
gas constant

Reynolds number, based on local inviscid properties and
x distance.

base radius of body or diameter, respectively
Sutherland constant

static temperature

x-component of velocity

r-component of velocity

velocity vector

streamwise coordinate, measured from forward stagnation
point

mass density
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NOMENCLATURE (Concl'd)

viscosity

transformed streamwise coordinate

transformed normal coordinate

wake thickness (from axis or plane of symmetry)
momentum thickness, or cone angle
transformed thickness parameter

ratio of specific heats

transformed shear function

transformed heat diffusion function

evaluated atr = § ory

L]
—

evaluated at r

0

0 or g
evaluated at edge of kh strip
partial derivative with respect to variable indicated

reservoir conditions
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I. INTRODUCTION

The flow in the wake of hypersonic vehicles has been the subject of consider-
able research in recent years. The interest in this subject stems mainly from
the realization that the trails of hypersonic vehicles are a potentially signifi-
cant source of observables, i.e., electrons and radiating species, The bulk
of the lieterature deals mainly with the trails of blunt bodies 1,2,3 where the
viscous core comprises a significant portion of the wake flowfield (from the
point of view of observables) only if turbulent mixing is present, However,

in the case of slender bodies, the observables in the inviscid flowfield are
minimized and the viscous region (laminar or turbulent) becomes the sole
source of electrons and radiating species.

An excellent account of the state of the art of the turbulent far wake has been
presented by Lees? and Vaglio-Laurin, Bloom, and Byrne, > These authors
extended their blunt-body analyses to the slender-body case. Most analyses
of the laminar far wake (shown schematically in figure 1) have been restricted
to similar solutions involving linearized forms or to solutions obtained by the
Karman-Pohlhausen method. The notable exception is the classical Goldstein
solution for the incompressible wake of a flat plate. 6

Recent experimental data acquired at Avco RAD and the Naval Ordinance
Laboratory (NOL) ballistic ranges show appreciable lengths of laminar wake
at Reynolds numbers higher than those previously reported. 4 Therefore, for
slender bodies a critical analysis of the laminar far wake has a twofold value:
(1) to provide detailed flowfields for the prediction of observables, and (2) to
compute accurately the appropriate transition parameters.

This paper presents a theoretical analysis of the laminar far wake and also
contains some of the experimental results obtained in the Avco RAD ballistic
range. The method of theoretical analysis is an extension of the multistrip
solution of the laminar boundary-layer equations. 7 No assumptions about the
form of the solution are required; only the initial and boundary conditions must
be specified., Since no solution of the near wake is presently available, the
initial profiles are somewhat arbitrary. However, initial velocity and enthal-
py profiles can be prescribed with some degree of confidence from existing
knowledge of gross near-wake properties and by utilizing overall momentum
and energy conservation. Only pure air wakes in chemical and thermodynamic
equilibrium, or completely frozen, are considered in the present analysis.
Some results for nonequilibrium wakes have been obtained by Bloom, et al.,
by the Karman-Pohlhausen technique, 3,5,8 The nonsimilar analysis with
chemical nonequilibrium has been formulated and some preliminary results
obtained 9, 10, but they are not included here.
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II. NONSIMILAR ANALYSIS

Steady flow downstream of the neck of a wake (i, e., the stagnation point in the
wake beyond which no recirculation takes place) can be described in the context

of boundary-layer theory by:
(puti)x + (pvti)t =0 (1)

1 .
. pu ux + pvu, = - p‘ + —-,—- (“rlur)r (Za)
r
' (2b)
0 = py
L) 2\1l (3)
puHy + pvH = -‘T Pr [H‘ +(Pr—-1) <T>]s
f r
where

0 for planar flow

1 for axisymmetric flow.

The conventional boundary conditions apply at the outer edge of the wake,

Jdu
u o=y and —— =
dr

. at r = § ,
dH
H-Hl and —— =
dr

while at the plane or axis of symmetry the boundary conditions are

du
u-uc md?r_=
atr = 0
JH
H = H, and —--ar -



Parenthetically, it may be noted at this point that if P, = 0 and Pt = 1, the
energy equation is satisfied by the Crocco integral:

H = Au + B

where A and B are constants:

Hl'Hc
A=

ul —uc

Hy - H

B =H, ~
¢ ul-uc

Therefore:

H u
Cy Cy

Hl' Rc “1"“c

is a particular solution of the energy equation, This solution is, of course,
only valid if the initial conditions also satisfy the Crocco integral. The present

- analysis is not restricted to this case, since the Crocco integral is not em-
ployed.

In the present analysis, the wake is divided into an arbitrary number of strips,
N, in the streamwise direction, and the equations then are integrated with
respect tor across the strips, i.e., between the limits of r = 0 and r = e

to give two ordinary differential equations:*

l’k tk
d u Yk u . . d {9
el [0 / L= - =) dae| -y F— dar| —(—
x P1 Y uy U dx
0 0
x

u pe td d (ln uy)

-pyu f] —(lnu

Py B1 % o1 o dx 1

0

Tk
. dp i u
/ il el e R (E) (4)

0

*The strip-integral method is discussed in greater detail in reference 7.
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d pu (P m ] T I Hy
t— u o— —m—— ey — i 4 t - en—— ¢ r e d —
(W] 1Y H,

dx Pl ul Hl Hl pl “1 dx
0
. 2 2 n
) [ Pr-1) = (2 11‘ (5)
2 = | — + (Pt = 1) = | , )
r
N r

The transformed independent variables £, 7, are now introduced

j+1

r
. 1 .
n = ’.+ / -£- r’dl’
st)+l P1
0

where L is a characteristic length of the problem and

j+1
5 ]

5 = |G+ / L odae
P1
0

is the thickness of the velocity and thermal profiles in the transformed plane.




The equations now become

dF
i+l o dA N Iy NS Uy
2 L 3¢ ° d¢ " % ¢ \y,

-

g

i 1/2 j
(i+1\[ # (6)
' I.\ CNACEE T3 G = terd)

1 u? u Z
c 1 c d 1
- — _— - — == AF; — In /2,
o O s 4 37 ")
(7)

where




P

l p i
-
K
1 +(N=k)
Nk N , k= 1,2,3, , N
L™
u " u
Fl = / — (—— - —) n’d,’
k ul ul ul
0
Mk
- — id
P / o T
0

Nk u
u k H :
—_——_— . —— 14
Fg = n’ dn
e / u \Hh H
0
The transformed boundary conditions are

u u
-— =1 and{—) =0
ul ul

7
at n =1
H H
r'“‘"’(r) -0
1 17’
u Yo u
—-—md(___>=0
u u u
1 1 17’
aty =0,
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Moreover, the transformed momentum and energy equations evaluated at
n = 0 become

G+l [(..) ]
Y1 2
Ye d Y% M e [Pl (“c d
—— -— - - - = — - —-— — ln ul
u d¢ yu; I\<Pc>j (Pl u L>,/2 Pc u d¢

Pi [

and

0

-

u g <Hc> G+ DI, <H>
u df Hl s _p_C j LM L 1/2 Hl' m.
P1 3]

2 .
v (“c)Ku
+ (Pr=1) o= [ _.) =0
Hp \u1/\u
m].

The velocity and stagnation enthalpy profiles can be expressed as polynominals
in 5. However, additional numerical accuracy can be obtained by choosing the

following:
B
— - l4e &M E 8, 7"
1
n=0
-7 N+ 1
H —
o = l4t+e L-q bnrpn
H .
n=0

which identically satisfy the imposed boundary conditions at 7 = 1 (and moreover
satisfy the requirement that all higher-order derivatives also vanish at that

lim % -
*Note that =g - - (uun,)t.o.



L
WP ;

B

point), The polynominal coefficients are made to satisfy the boundary condi-
tions at 5 = 0 and the values of u, and Hy at the strip boundaries and at the
wake axis, or plane of symmetry, and also Hpy .

The ordinary equation of state, P = pi!'r » provides the necessary thermodynamic
relations for a perfect gas, while curvefits of the Mollier chart!4 can be em-
ployed for equilibrium air,

Frozen flow can be approximated by the use of the perfect gas law with appro-
priate gas constant, R, and ratio of specific heats, y. At low temperatures,
the Sutherland viscosity law is employed tn give

T \/2[ 1+8/T,
Iy = [ e [ennasasmw— Y §1, Y (VT § k = ¢)
k Tl Tk/Tl " S/Tl (including c

where

S = 120°K

while at elevated temperatures the pu ratio is approximated by

I = (including k = ¢)
by -1/2 R\~
Al — - B| —
by b,
where
A =3,03
B =2,03

he = 4.5 x 10 2/ sec?.

Therefore, 2N + 2 first-order ordinary differential equations are obtained
(N momentum integral, N energy integral, and momentum and energy at tr= 0)



which can be solved numerically for the 2N + 2 unknowns (A, ue s Hyo fork = 2,
3...» N, and u, H, and Hyp. ). A predictor-corrector marching scheme is
employed for solution of the equations on an IBM 7094, *

*It is important to note that in a numerical solution equations (8) and (9) are singular for u = 0, although as pointed out

by T. Kubota (in private communication), this difficulty can be avoided in an analytical solution by use of an appropri-
ate, nonzero pressure gradient. The behavior of the equations near this rear stagnation point has been enminezf iy

S.1. Cheng (Avco RAD-TM=63-23) and by Vaglio-Laurin, Bloom and Byrne’. In the present analysis, solution of the equa-
tions is n’ny. begun slightly away from the stagnation point, with a small but finite value of u =

-10-



III, COMPARISON OF METHODS OF APPROACH TO THE FLUID
DYNAMICS OF THE WAKE

The laminar wake of a slender body only recently has gained practical
importance as a fluid-dynamic problem due to its apparent high stability at
hypersonic speeds* which has not been previously observed. However, compu-
tations of the laminar wake of a thin flat plate at low speeds were reported in
the 1930's (e. g., reference 6), and various approximate methods have been
developed. The only ""exact' solution, however, is that of Goldstein, 6 which is
essentially a finite difference solution for the wake in the immediate vicinity

of the trailing edge. The approximate methods which have been developed fall
into essentially two categories--(1) the "similarity" solutions, and (2) the
Karman-Pohlhausen-type solutions,

The similarity analyses require linearization of the velocity defect (uj - u)
and usually neglect the streamwise pressure gradients, which results in a
closed-form solution of the partial differential equations of momentum and
energy satisfying the wake-boundary conditions. The effect of initial conditions

. is felt only through two constants in the solution, which are usually defined

by overall momentum and energy conservation from the body boundary layer.

The Karman-Pohlhausen-type analysis, as the name implies, is an extension
of the integral boundary-layer approach to the wake problem. Clearly, the
accuracy of an integral-type solution is dependent on its ability to represent
the detailed behavior of properties across the layer, which is a function of

the number of independent, free parameters retained in the solution, ** In

the Karman-Pohlhausen method, the only free (undetermined) parameters are
usually the thickness &, the velocity, and enthalpy on the axis, or plane, of
symmetry, u. and Hc, and the curvature of the enthalpy profile at the axis

Hpp . Hence, the only nonsimilar influence on the normalized velocity profile

u=u
< c) is the thickness 8, and the only influence on the normalized enthalpy
ul—uc

profile

is due to & and the curvature of the profile at the axis. The
initial con:liti:ms are specified through the initial values of the free parameters.
The momentum-integral equation itself is no more than an expression of the
fact that the drag contained in the wake is constant, implying that in anumerical
integration of the equations the initial conditions must reflect the correct drag
(i. e., initial momentum thickness) to guarantee the proper integration constant.
In the Karman-Pohlhausen technique, this requirement can cuase a mismatch
of the overall thickness, depending on the shape of the initial profile being
approximated.

*Discussed in further detail later.

**Reference B is an excellent example of the use of the Karman-Pohlhausen technique in studying nonequilibrium viscous
flow problems.

-11-



The present method also is categorized as an integral method (being, in fact,
an application of Dorodnitsyn's '"method of integral relations') and, as such,

is an approximate method also, However, it avoids the restrictions associated
with the Karman-Pohlhausen method since the velocity and enthalpy on the
strip boundaries are additional free parameters which must be determined
from the differential equations,

The problem of the laminar wake of a thin flat plate was examined in detail

to compare the approximate methods mentioned above and the present method with
the classical Goldstein solution. This problem also has the feature that there

is no recirculation and the initial (Blasius) profile is known exactly. The decay
of the velocity along the plane of symmetry and typical velocity profiles are

u
illustrated in figures 2 and 3. * The similarity solutions give {1 - :c- ~1/£172
which is particularly poor near the trailing edge, although the ratelis correct
asymptotically at large distances. The Karman-Pohlhausen method shows
remarkably good agreement with the exact results near the center of the wake
in this c.se. Some differences in thickness & are illustrated in figure 4.

The present method, however, is in essentially perfect agreement with
Goldstein's solution, It should be noted that the resuits from the present

method shown were obtained with six strips, but calculations also were performed
with two through five strips, Rapid convergence of the solution was obtained

with greater than four strips, although two strips offered little improvement

over the Karman-Pohlhausen (one strip) solution,

*The reference length L is taken as the plate length in this case.

-12-
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Iv. HYPERSONIC LAMINAR FAR WAKE FOR A SLENDER BODY

A. INITIAL (NECK) CONDITIONS

The conditions which occur at the neck of the hypersonic wake are the result
of simultaneous mixing and recirculation of the boundary layer shed from the
body, as well as a strong adverse pressure gradient (which '""drives'' the re-
circulating flow). Also, the base of the body is a stagnation point which has
been experimentally observed to have many of the features (e. g., high heat
flux) of a blunt-body stagnation point, although less severe. Unfortunately,
the near wake has thus far eluded successful theoretical treatment, but it is
currently receiving considerable attention. Various approximations have been
attempted, but none offer any really satisfactory insight into the mechanism
or magnitude of the recirculation and base heating.

The mixing phenomenon per se has been treated by Denison and Baum, 11Vaglio-
Laurin, Bloom and Byrne 5 as an extension of the earlier ideas of Chapman, 12
who studied the mixing of a stream with quiescent air., Chapman's analysis
assumed a zero-thickness shear layer at the beginning of the mixing region,

-
for which he obtained a value of -E- = 0, 587 for the velocity ratio of the

1
dividing streamline, * Denison and Baum considered the supersonic mixing
process starting with a Blasius profile and both cold quiescent air (free-stream
static temperature) and hot quiescent air (free-stream stagnation temperature)
for a variety of cone and wedge angles. Their results indicate that the dividing
streamline velocity ratio is on the order of 0. 25 to 0. 20 at hypersonic speeds
for 10-to 20-degree cones for the cold case, and 0. 35 to 0. 30 for the hot case.
With constant-temperature quiescent air,**constant pressure mixing, and
Prandtl number of unity, the Crocco integral is a solution of the energy equa-
tion, giving:

where
H* = dividing streamline total enthalpy
Hy, = total enthalpy of the quiescent air
H = total enthalpy of the inviscid stream.

e .
*The streamline which separates the flow which passes the neck from the recirculating flow.
seAt approximately the body wall temperature.

-17-
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H*
For the cold cass, .;:: « 1, giving ;: - :‘:: Clearly, in the hot case ﬁ-l- -1,

1 1
Therefore, consideration of the mixing process alone leads to a realistic lower
limit on the dividing streamline enthalpy. Assuming that the compression pro-
cess occurs through a shocklike discontinuity (allowing the neglect of viscous
dissipation), then the dividing streamline enthalpy can be taken as the value
occurring on the axis at the neck (i.e., where the dividing streamline is stag-
nated).

The nature of the compression process in the neck region suggests that the neck
bears certain similarities to a boundary-layer separation point. (Indeed, it
has been recognized by various authors that gross properties such as base
pressure and wake angle are predictable in terms of separation-point pressure
correlations.) Therefore, the use of a separation-point velocity profile from
similarity solutions such as Cohen and Reshotkol3 appears to be a reasonable
approximation, However, the enthalpy profile which would result after such a
compression is not known beyond the axis value indicated above. Clearly, the
use of the Crocco integral is not correct for the entire near wake, a region
which includes strong pressure gradients; but, it does have the justification of
being at least a consistent means of approximating the neck enthalpy profile in
terms of the assumed velocity profile and the (approximately) known enthalpy
on the axis. However, it should be noted that the use of the Crocco integral
leads to an "annulus'' of high temperature gas rather than a '"cylinder' at the
neck for slender bodies. It is not obvious whether this is physically reason-
able; intuitively, it would be expected that the peak temperature would occur

at the axis. Regardless, for the lack of any better knowledge of the near wake,
the Crocco integral will be used in the present analysis to specify the initial
total enthalpy.

The necessity of matching the initial drag (i.e., momentum thickness) at the
neck has been previously mentioned. Assuming, a priori, that the drag added
in the near wake is negligible in comparison with that shed from the body in the
boundary layer, the initial momentum thickness is given by:

[pl ulz Gi“'l]neck - [Pl ulz(j +1) Rg 8 ]body

where

-18-



In the numerical examples the initial value of the thickness parameter, A , is
computed from the neck momentum thickness in the following manner:

' 2/j +1
,\ (e) 2 S Re /2 |
L) )G+DF S

The above assumptions are verified a posteriori only in that they lead to results
which are in good agreement with the experimentally observed facts (i.e., the
wake thickness and its Reynolds-number dependence), which is discussed in
greater detail later in this paper. However, when they are applied at very low
pressures (high altitude) certain anomalous results are obtained, namely initial
wake thicknesses which exceed tiie body diameter and even the ''displaced"

body diameter (i. e., body plus boundary layer). This is undoubtedly due to
neglect of interaction with the individual flow. The viscous-inviscid interaction
is a separate problem which is not considered in this analysis, nor in any of the
examples,

B. NUMERICAL EXAMPLES

The present analysis was applied to study the development of the laminar far-
wake for some typical cases of interest. The medium is assumed to be air in
equilibrium, unless otherwise noted, with a constant Prandtl number of 0. 72,

The following case is an example which is typical of experiments performed in
the Avco RAD ballistics range:

10-degree (semivertex angle) cone
base diameter: 0. 300 inch
velocity: 15,688 ft,/'sec

pressure: 150 mmHg

H
Velocity and temperature profiles (with H—c = 0.3 initially) for the wake at

these conditions are shown in figures 5 and 6. The features of the flowfield
which can be observed from the Schlieren photos (e. g., figure 14, the thickness
and growth rate) are essentially in agreement with these results.

This slender axisymmetric body example may be contrasted to the results for

a blunt semi-infinite body; namely, a cylinder placed normal to the flow. The
conditions selected correspond to one of the experiments performed by McCarthy
in the GALCIT with tunnel:16

0. 300~inch-diameter cylinder
free-stream Mach number: 5.7
reservoir pressure: 35 psig
reservoir temperature; 262°F
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In this case, the viscous core may entrain mass flow from the entropy layer as
it grows. This ""swallowing' effect was estimated using the method of character-
istics, It was found, however, that the laminar core (in the present example)
does not entrain any appreciable mass from the entropy layer for at least 25
diameters from the neck. An appreciable velocity gradient is encountered,

nonetheless, due to the presence of expansion waves reflected from the bow
shock,

A constant stagnation enthalpy (equal to the free-stream value) was assumed,
since the tunnel running time was long allowing the model to approach an equili-
brium temperature, Typical resulting velocity and temperature profiles are
shown in figures 7 and 8. The very fast velocity decay observed here is similar
to that found in the classical flat-plate solution, and appears to be peculiar to
semiinfinite bodies, The relative importance of the nonsimilar behavior of

the solution and also of the attendant favorable pressure gradient in this ex-
ample are illustrated in figure 9. Asmuchasa 70-percent error can be attribut-
ed to neglect of the pressure gradient. * It should also be noted that no effect

of Reynolds number on the decay rates can be expected (also, as in the flat-
plate case) if the initial value of the thickness parameter A is constant, as indi-
cated by McCarthy's data.

As an example for the laminar far wake of a slender body at flight conditions,
a constant velocity (22, 000 ft/sec) trajectory from 200, 000 to 100, 000 feet was
assumed for a 10-foot, 12-degree (semivertex) angle cone. An initial enthalpy

H

ratio of H—c = 0. 3 was assumed and the calculations were performed for both
1

frozen( y = 1l.4andR = 1,724 ft2/sec? / ° R ) and equilibrium air. Typical
profiles and the velocity and temperature along the wake axis are given in
figures 10, 11, 12, and 13. The results are qualitatively similar to those for
the previous slender-body example. It is interesting to note the growth in
length of the trail with decreasing altitude. However, at 200,000 feet the ini-
tial thickness exceeds the body diameter by about 30 percent. Consideration
of the interaction phenomena should lead to a shorter trail at this altitude.
(The equilibrium results at 200, 000 feet and the frozen results at 100, 000 feet
are included only for comparison's sake; clearly neither are physically realistic.)

*Actention must be calied to the fact that much smaller pressure geadients are encouatered with slender, sharp cones.
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V. EXPERIMENTAL STUDIES

A series of ballistic-range experiments with conical models of 10, 15, and
27-1/2-degree half angles were performed. The model velocities range be-
tween 4, 000 and 17, 000 ft/sec with range pressures varying from 15 to

380 mmHg in air.

The techniques for the use of a light-gas gun for launching projectiles to

reentry velocities are well established. The projectile must have aerodynamic
stability and must be capable of withstanding the launch loading of the gun. A
conical model with a semivertex angle between 10 and 20 degrees has been de-
veloped which can withstand the launching environment of a light-gas gun to
achieve velocities up to 17, 000 ft/sec. This raodel, shown in figure 14, consists
of a steel tip and titanium afterbody. It has a hollow base to provide a static
margin of 15 percent. The sabot consists of an aluminum-driven disc and

four Zelux petal components that interlock with the model to provide the neces-
sary inbore support of the model during launch., Many sabot-model combinations
were tried before this successful package was achieved. Failure of the model
was indicated by fracture and separation of the tip or by bulging or separation

at the bimetal interface. These models have a dispersion at the end of the

range (approximately 40 feet from the muzzle) of about 0.75 inch. Approxi-
mately 90 percent of these models result in successful launchings. The pitch
and yaw of the models, as measured from the photographic stations of the

range, are generally limited to a few degrees as measured from the velocity
vector.

A one-piece, steel-cone model (having a hollow base) has been used for half
angles of 27. 5 degrees. These models exhibit a larger dispersion than the
above two-piece design,

Two 0.600-caliber light-gas-gun ranges have been used in this program, *

The first range is equipped with a 12-inch diameter, double-traverse Schlieren
system. The l2-inch diameter parabolic mirror is located inside a 10-foot-
diameter by 14-foot-long tank. This range has been used to study the low-
velocity regime (under 11, 000 ft/sec) where the sensitivity of the double-
traverse system is utilized for flow visualization at low density (e.g., pres-
sures in the range 15< P<100 mmHg). A 0.0005-inch Mylar foil screen has
been used to provide the trigger pulse for the spark light source in the Schlieren
station in some of the photographs. This screen was installed to obtain greater
reliability over the light screen originally employed within the vacuum tank and
to permit easy adjustment of the position of the model along its trajectory when
the photograph is made. There is no effect from the foil on the flowfield since
there is negligible time for any disturbance to propagate before the photograph
is made.

*A more detailed description of the Avco RAD ballistics-range facility and these tests is contained in Avco RAD-TM-=63-20.
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A second caliber -0, 600 light-gas-gun range has been used to obtain data from
11,000 to 17, 000 ft/sec at pressures greater than 30 mmHg in air. Primary

instrumentation on this range is a 12-inch diameter, single-pass Schlieren
apparatus.

Some results covering the range of experimental conditions for which transi-
tion was clearly observable from the Schlieren photographs are compiled in
table 1. Five of the Schlieren photographs which exemplify the typical features
of the flowfield of a slender-body wake are presented here as figures 15, 16,
17,18,and 19. Similar features can be seen in shadowgraph photos (e. g.,
figure 1, reference 5). It should be noted that the near-wake details cannot be
seen in such photographs. Rather, recourse must be made to observables such

as the apparent origin of the trailing shock and/or a minimum-thickness section
to define the neck location.

Model pitching in the plane of the photograph is clearly identifiable by the asym-
metric location of the wake within the shock layer. Small yaw angles normal to
the plane of the photograph are indicated by an abnormally thick wake as com-

pared to zero yaw at the same conditions, and by appearance of a streak down
the center of the wake,

The occurrence of turbulence is always clearly identifiable for sharp bodies*
and is usually preceded by an instability which manifests itself as sinusoidal
waviness of the wake. Generally, the waviness is followed almost immediately
followed by turbulence, but occasionally it persists for an appreciable length
before breakdown into turbulence. In none of the photos are the waves observed
to be opposing (i. e., peak opposite peak, valley opposite valley). Some evidence
of helical motion can be seen in the cases with yaw (e. g., figure 15). By con-
trast, a model without yaw at approximately the same conditions is shown in
figure 16. The effect of pressure on transition is demonstrated in figures 17,

18, and 19.

*This is not necessarily the case for blunt bodies, where the viscous core may be obscured by the inviscid entropy layer
which enshrouds it.

-33-



.
%«'
4
:

TABLE |

EXPERIMENTAL CONDITIONS FOR WHICH TRANSITION IS CLEARLY OBSERVABLE FROM PHOTOGRAPHS

Cone Semi- Base Cone Range
vertes Angle Diameter Velocity Pressure
© {degrees) 4 (inches) v (ft/sec) P.{mm Hg) ", o (Re/ft), Hex,,
| 10 0.3 10, 000 50 8.8 5.0 1.6 106 2.5 106
2 10 0.3 9,700 75 8.5 5.9 6.9 106 2.7 108
! 10 0.3 9, 300 40 8.1 4.4 3.4 100 9.9 10°
4 10 0.3 10, 060 40 8.8 5.3 3.7 100 1.7 10°
5 10 0.3 9, 500 100 8.3 6.5 8. 8108 2.7108
6 10 0.3 9,000 350 7.9 7.9 3.0107 5.5 106
7 10 0.3 4,900 150 4.3 4.3 6.8 10® 1.0 108
§ 10 0.3 11, 700 150 10,3 9.0 1.7 107 3,6 108
9 10 0.3 13,000 150 1.6 8.6 1.9 107 6.8 106
10 10 0.3 14, 800 150 13.0 10.5 2.1107 5.6 106
1 10 0.3 15, 700 150 13,6 10,2 2.1107 1.5 107
12 10 0.3 14, 100 100 12.5 8.7 1.4 107 5,3 10
13 15 0.4 8, 100 75 7.1 5.4 5.6 106 2.1108
14 15 0.4 10, 000 75 8.7 7.5 6.7 106 1.7 108
15 15 0.4 12, 700 75 10,6 8.1 7.2 100 2.7 106
16 15 0.4 10, 500 30 9,2 4.7 2.9 106 1.7 108
17 15 0.4 9, 400 100 8.4 7.4 8.8 100 2.1 108
18 15 0.4 10, 300 100 9.0 8.0 9.6 10 2.2 10®
19 15 0.4 9,000 150 7.9 7.2 1.2 107 2.6 10
20 15 0.4 9,800 250 8.6 8.2 2.3 107 5.1 108
21 15 0.4 13, 300 100 10. 8 8.4 8.8 10° 3.2 108
22 15 0.4 14, 500 100 12,2 9.0 1.1107 5.6 100
23 15 0.3 14, 200 150 11.8 9.6 1.6 107 3.9 10°
24 15 0.3 14, 600 100 12,0 9.3 1.0 107 3.7 106
25 15 0.3 15, 800 100 12.9 9.4 1.1107 4.1 10
26 15 0.3 10, 000 360 8.8 8.7 3.3 107 4.3 108
27 21-1/2 0.3 9, 200 50 5.5 3.3 1.2 10? 3.6 102
28 8 (NOL) 0.4 14, 800 100 13.0 10,7 1.3 10 6.110
29 8 (NOL) 0.4 14, 800 100 13.0 9.7 1.3 107 9.0 10%
b z, Rew,, T Terty
1 3.3 4.2 1.8 106 4.5 5.9
2 2.3 3.5 2.8 10° 4.4 5.9
3 3.3 4.5 1.3 108 4.0 5.1
4 2.7 3.5 1.3 108 4.5 6.0
5 1.8 3 3.7 106 4.5 6.1
6 1.0 1.0 5.5 10° 3.8 3.8
7 1.0 1.0 1.0 10 1.4 1.4
8 1.4 2.6 5.8 10® 6.0 7.3
9 2.1 3.6 8.6 10° 8.3 1.5
10 1.8 3.2 8.3 10° 8.3 9.6
1n 2.3 4.1 7.8 10° 8.7 10.0
12 2,3 3.6 5.8 106 8.0 9.4
13 2.3 4.2 2.9 10 3.2 4.3
14 1.6 31 2.8 10® 4.5 5.6
15 2.3 41 3.8 100 6.2 7.5
16 3.6 4.6 1.1 108 4.9 6.1
17 1.5 1 3.7 108 4.2 5.2
18 1.4 2.8 5.8 108 4.8 5.8
19 1.3 2.8 5.0 106 3.8 4.4
20 1.2 2.7 7.9 106 4.7 5.3
21 2.3 5.0 5.4 108 6.2 7.4
22 2.8 4.9 7.4 10° 7.4 8.6
23 2.0 4.2 6.7 10° 7.1 8.2
24 2.3 4.3 5.3 100 7.2 8.3
25 2.6 4.4 5.1 100 7.6 8.8
26 1.0 1.0 4.3 106 4.5 4.5
27 3.5 4.1 2.8 10° 2.1 2.9
28 2.1 4.4 1.0 10° 8.3 9.5
29 3.1 5.8 1.2 108 8.3 9.6
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Vi. TRANSITION CORRELATION

It is generally agreed that wake transition is dependent on a Reynolds number
and a Mach number which are based on the relative velocity of the wake (v, -

uc ), (references 4, 19, 20, and 21). Stability theory indicates that the Reynolds
number and Mach number should be evaluated using physical properties at the
"critical point" in the layer. * However, transition correlations commonly use
properties at the outer edge of the layer and introduce a temperature ratio as a
third parameter, Several length scales, namely surface distance to transition
point, boundary-layer thickness, momentum thickness, etc., have been employed
in defining a transition Reynolds number. None of these parameters are com-
pletely satisfactory in situations where the viscous-layer history is significant
(e.g., strongly varying edge properties, nonsimilar profile shape, etc.).

Clearly, the latter remarks are appropriate to wake transition. A heuristic
approach to this problem (short of a complete stability analysis) is to attempt
correlation using physically reasonable length from the origin of the viscous
layer to the transition point, X, , and the layer thickness at transition, 5, **
both of which are readily measurable. A third possibility, however, is the
relative distance* *a particle travels along the axis to the transition point, X,, .
This is a measure of the time which a disturbance which is convected with the
particle has to amplify. The si%nificance of this time is suggested by the
experiments of Sato and Kuriki, 5 in which the disturbances were observed to
originate at the center of the wake and grow as they convected downstream.
The distance is given by:

t
X = / (u) - u.) dt (reference system fixed with respect to the

vehicle).
0

A photograph of the flowfield, however, only reveals the relative distance travel-
ed by a particle along the axis as compared with the distance traveled by the
vehicle:

Y
(xtr)photo = L+ / u. dt

'

* Gold, H., Avco RAD, Personal Communication
“8“ is defined as the wake diameter at transition.

¢*¢j.e., in a coordinate system fixed with respect to the medium in which the body is immersed.
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Therefore,
X)
X X i d
tr 1 - u, x
L
where
3!
Xl = / ul de
0
and
Xy
Ue
(Xtt)photo =L+ / q dx
L

The distance to transition along a wall or in a shear layer is consistent with
this formulation, (i.e., with u. = 0).

The preceeding analysis was used to correlate the wake-transition data from

the experiments in the Avco RAD ballistics range and some from the NOL
ballistics range. The Reynolds number and Mach number are defined as:

- (S e
Re/ftl = 1 - ——
"1

- ul uc
M = — (1 - —
1 ﬂl ( ul>

u
(o] —

The values of — and X, were computed for the experimental conditions
u

utilizing the values of X,, measured from Schlieren and shadowgraph photos.

The value of §,, was also measured. (Transition was defined by the occurrence
of waviness at the outer edge of the wake.) A correlation of these experimental
data is offered in figures 20, 21, and 22, basedon X, , &, » and X, , re-
spectively. The scatter is at least partially due to the fact that no attempt to
account for temperature effects has been included, and the ratio T /T; at tran-
sition covers a range from about 4 to 10 for the slender, high-velocity cones based

-42-



H

C
onanassumed value of -ﬁ- = 0. 3 at the neck.
1

Some transition data of Sato and Kurikil® and McCa.rthy16 also are included
for the sake of comparison. For these data, T./T, was of the order of one.
The correlation based on the measured x_ shows the most scatter. The
correlations based on X,, and §,, have about the same scatter, although the
latter has the feature of improving the correlation at low M, (i.e., the data
of references 15 and 16).
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MACH NUMBER, M,

Figure 20 WAKE TRANSITION CORRELATION (BASED ON MEASURED

TRANSITION DISTANCE)
© 63-4081
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Figure 22 WAKE TRANSITION CORRELATION (BASED ON COMPUTED
TRANSlTIOba_,[gISTANCE)
63-4
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Vil. PREDICTION OF TRANSITION

The R—eb’ K‘l and li-x ) h_dl histories of the wake of a 5-foot, 12-degree cone
have been computed and are shown in figures 23 and 24, * The predicted loci

of transition points is remarkably consistent for these two correlations.
(Predictions on the basis of ﬁ:x“ indicate a long laminar wake persisting to
altitudes lower than 100, 000 feet). Presumably, the transition Reynolds number
for the boundary layer will continue to rise with Mach number inferring that
transition on the cone surface will occur in the neighborhood of 100, 000 feet,

at which time the near-wake and any portion of the far-wake still laminar

would be tripped, %

The effect of increased vehicle size also has been investigated. As can be
seen from figures 21 and 22, the transition point stays near the neck at

115, 000 feet regardless of vehicle size, although as much as 300 to 400 feet
of laminar run may occur behind a 15-foot cone at 200, 000 feet.

The possible effects of chemical nonequilibrium on the prediction of transition
for this vehicle have not been included; however, the velocity decay is only
slightly affected by the temperature variation (e.g., figure 10).

It should be noted for large X the values of R‘ex and i'ES become an inverse
function of X . Hence, at some altitude above 200, 000 feet, in the present
example, the wake will remain completely laminar.,* %% This resultis qualitatively
consistent with conclusions reacted by Lees4 from energy considerations,

———————————————

* A constant velocity (22,000 ft/sec) trajectory between 200,000 and 100,000 feet is assumed.

** It is anticipated that surface ablation will have two opposing effects on the boundary-layer stability. The blowing
itself tends to be destabilizing, but on the other hand it will enhance the stabilizing effects of the favorable pressure
gradient (induced by viscous-inviscid interaction) by further increasing the displacement thickness.

*** This altitude bound on the occurrence of wansition will, of course, depend on the size, shape, and velocity of the
vehicle in question.
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VIII. NECK THICKNESS OF THE LAMINAR WAKE

As in the previous discussion (section IV) on the momentum thickness at the
neck, it also may be argued that the overall wake thickness at the neck also
must vary as the fourth root of Reynolds number in the axisymmetric case,

as opposed to the square root in the planar (semi-infinite) case. In particular,
if negligible mass addition to the viscous core in the near-wake region is as-
sumed, then a simple mass balance yields:

. ¢i+1
8]+1 1 d (G+1) Ry d o
u -~ - = u ]+ - e—
1% 5i <1 PL Y b 5
neck body
where
1/j +1
]
u .
o = (j+l)/ 1 - p t dr
PL Y

0

For a cone this can be reduced to

( ) 1/4
PP M ]
i (Red)1/4 = 1 71 Fl/cone < . ) 0T
? neck (pl bt | ”l)neck 2 sin 6
B 1/4
Pcone/pe.g
= —— f(Mm, 0, Tw) .
2 sin 6
L.
[y 1/4
= —_ M f [M y (), TW]
2 = o0
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where

1/2

5
The parameter [d— (Rey )1/4] , was found to be essentially a function solely
nec

of Mach number for the range of cone-angle and Mach-number combinations
encountered in the present tests, when computed in the manner discussed in
in the previous section on initial conditions (i. e., employing the values of

5 which give the proper drag at the neck when used with the assumed separa-
tion-point velocity profile). The values of this parameter based on the experi-
mentally measured neck thickness are shown in figure 25 to compare remark-
ably well with the computed curve, *

*The thickness & in this figure is the wake diameter rather than radius.
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IX. CONCLUSIONS

The results of theoretical and experimental investigations of the flow in the wake
of slender hypersonic vehicles have been presented. In particular, nonsimilar
solution of the governing equations is contrasted with similar and Karman-
Pohlhausen-type solutions. The similar solution is shown to be inadequate near
the neck of the wake of a slender body, although correct asymptotically at large
distances. The Karman-Pohlhausen technique appearstooffer a good compromise
between simplicity and accuracy for slender -body wakes. Some numerical
examples for slender and blunt bodies are presented using the nonsimilar solution.

The results of a series of ballistic range experiments on slender cones in the
Avco RAD facilities are summarized and discussed. The preceding analysis is
used to compute appropriate parameters for the correlation of wake transition
and neck diameter from these data. Moreover, predictions of wake transition
for a 5-foot, 12-degree half-angle cone at 22,000 ft/sec are made, which indicate
transition moves from about 250 feet behind the cone apex at an altitude of
200,000 feet to about 20 feet at 100,000 feet. Increasing the cone length to 15
feet is shown to add about 100 feet to the length of the laminar trail at 200, 000

" feet, and to add about 15 feet at 100,000 feet. The existence of an altitude above

which transition cannot occur (for a vehicle of given size and velocity) also is
indicated by the correlation.
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